Technical support: support@abbkine.com

Website: https://www.abbkine.com

# CheKine™ Micro NADH Oxidase (NOX) Activity Assay Kit

Cat #: KTB1021 Size: 48 T/96 T

| [EQ] | Micro NADH Oxidase (NOX) Activity Assay Kit                   |     |                               |  |  |
|------|---------------------------------------------------------------|-----|-------------------------------|--|--|
| REF  | Cat #: KTB1021                                                | LOT | Lot #: Refer to product label |  |  |
|      | Applicable samples: Animal and Plant Tissues, Cells, Bacteria |     |                               |  |  |
| Å    | Storage: Stored at -20°C for 12 months, protected from light  |     |                               |  |  |

## **Assay Principle**

NADH Oxidase (NOX, EC 1.6.99.3) is widely found in animals, plants, microorganisms and cultured cells, and can directly oxidize NADH to NAD in the presence of oxygen. This enzyme is not only involved in the regeneration of NAD, but also closely related to the immune response. CheKine™ Micro NADH Oxidase (NOX) Activity Assay Kit provides a simple method for detecting NOX activity in a variety of biological samples such as animal and plant tissues, cells and bacteria. In the assay, NOX can oxidize NADH to NAD, the oxidation of NADH is coupled with the reduction of 2,6 dichlorophenol indigo (DCPIP), the blue DCPIP is reduced to colorless DCPIP, and the reduction rate of blue DCPIP is measured at 600 nm which can reflect NADH oxidase activity.

## **Materials Supplied and Storage Conditions**

| V:4                       | Size    |        | 24                        |
|---------------------------|---------|--------|---------------------------|
| Kit components            | 48 T    | 96 T   | Storage conditions        |
| Sample Lysis Buffer       | 50 mL   | 100 mL | -20°C                     |
| Mitochondria Lysis Buffer | 12 mL   | 24 mL  | 4°C                       |
| Protease Inhibitor        | 0.75 mL | 1.5 mL | -20°C                     |
| Chromogen                 | 12 mL   | 24 mL  | 4°C, protected from light |
| Substrate                 | 1       | 1      | -20℃                      |

### **Materials Required but Not Supplied**

- · Microplate reader or visible spectrophotometer capable of measuring absorbance at 600 nm
- 96-well plate or microglass cuvette, precision pipettes, disposable pipette tips
- · Freezing centrifuge, incubator
- · Deionized water
- · Homogenizer (for tissue samples)

## **Reagent Preparation**



Version 20220909

Sample Lysis Buffer: Ready to use as supplied. Equilibrate to room temperature before use. Store at -20°C.

Mitochondria Lysis Buffer: Ready to use as supplied. Equilibrate to room temperature before use. Store at 4°C.

Protease Inhibitor: Ready to use as supplied. Equilibrate to room temperature before use. Store at -20°C.

Chromogen: Ready to use as supplied. Equilibrate to room temperature before use. Store at 4°C, protected from light.

**Working Substrate**: Add 5 mL deionized water to each Substrate before use, and store the reagent at -20°C, place on ice to be used, avoid repeated freezing and thawing.

#### **Sample Preparation**

Note: Fresh samples are recommended, If not assayed immediately, samples can be stored at -80°C for one month.

Separation of cytoplasmic proteins and mitochondrial proteins in tissues, bacteria or cells:

- 1. Accurately weigh 0.1 g tissue or collect  $5\times10^6$  cells or bacteria, add 1 mL Sample Lysis Buffer and 10  $\mu$ L Protease Inhibitor, and homogenize on ice with dounce homogenizer.
- 2. Centrifuge at 4°C, 600 g for 5 min.
- 3. Transfer the supernatant to another centrifuge tube, centrifuge at 4°C, 11,000 g for 10 min.
- 4. The supernatant is the cytoplasmic protein which removes mitochondria and can be used to determine the NOX leakage from the mitochondria (this step is optional). The second time precipitation is mitochondria, 200 µL Mitochondria Lysis Buffer and 2 µL Protease Inhibitor are added, ultrasonic 5 min (power 20%, ultrasound 3 s, interval 7 s, repeated 30 times), used for NOX activity determination.

### **Assay Procedure**

- 1. Preheat the microplate reader or visible spectrophotometer for more than 30 min, and adjust the wavelength to 600 nm, visible spectrophotometer was returned to zero with deionized water.
- 2. Put Chromogen in a 25°C or 37°C (mammal) Incubator for 30 min.
- 3. Add the following reagents to the 96-well plate or microglass cuvette:

| Reagent             | Blank Well (µL) | Test Well (μL) |
|---------------------|-----------------|----------------|
| Sample              | 0               | 10             |
| Sample Lysis Buffer | 50              | 0              |
| Chromogen           | 200             | 200            |
| Working Substrate   | 0               | 40             |

Mix well, record the 10 s absorbance value at 600 nm as  $A_1$ , and incubate at 25°C or 37°C (Mammals) In the incubator, after 1 min, quickly take out and record 1 min 10 s absorbance value as  $A_2$ .

Note: Blank well only need to measure 1 time. In order to guarantee the accuracy of experimental results, need to do a pre-experiment with 2-3 samples. The optimal reaction temperature of NOX in different samples is slightly different, and it can be adjusted between 25-37°C. Since the enzyme activity is calculated based on the reaction rate, when using a 96-well plate, please control the number of samples to be measured at one time according to the operating speed.

## **Data Analysis**

Note: We provide you with calculation formulae, including the derivation process and final formula. The two are exactly equal. It is suggested that the concise calculation formula in bold is final formula.

A. 96-well plates calculation formula

1. Calculated by sample fresh weight

Active unit definition: A 0.005 change of A600 value per g of sample per min was catalyzed at reaction system is defined as a unit of enzyme activity.



Version 20220909

<sup>4.</sup> Calculate  $\Delta A = A_1 - A_2$ . Record  $\Delta A_{Blank}$ ,  $\Delta A_{Test}$ ,  $\Delta \Delta A = \Delta_{Test} - \Delta A_{Blank}$ .

NOX supernatant (U/g)=ΔΔA<sub>Supernatant</sub>÷0.005×V<sub>Total</sub>÷(W÷V<sub>Extrac</sub> t×V<sub>Sample</sub>)÷T=5,050×ΔΔA<sub>Supernatant</sub>÷W

NOX precipitation (U/g)=ΔΔΑ<sub>Precipitation</sub>÷0.005×V<sub>Total</sub>÷(W÷V<sub>Total</sub> Sample×V<sub>Sample</sub>)÷T=1,010×ΔΔΑ<sub>Precipitation</sub>÷W

NOX total (U/g)=NOX<sub>Supernatant</sub>+NOX<sub>Precipitation</sub>=5,050×ΔΔA<sub>Supernatant</sub>÷W+1,010×ΔΔA<sub>Precipitation</sub>÷W

2. Calculated by bacteria or cells number

Active unit definition: A 0.005 change of A600 value per 10<sup>4</sup> bacteria or cells per min was catalyzed at reaction system is defined as a unit of enzyme activity.

 $NOX~(U/10^4) = \Delta\Delta\Delta A \div 0.005 \times V_{Total} \div (V_{Sample} \div V_{Total~Sample} \times 500) \div T = 2.02 \times \Delta\Delta\Delta A$ 

- B. Microglass cuvette calculation formula
- 1. Calculated by sample fresh weight

Active unit definition: A 0.01 change of A600 value per g of sample per min was catalyzed at reaction system is defined as a unit of enzyme activity.

NOX supernatant (U/g)= $\Delta\Delta$ A<sub>Supernatant</sub>÷0.01×V<sub>Total</sub>÷(W÷V<sub>Extract</sub>×V<sub>Sample</sub>)÷T=2,525× $\Delta\Delta$ A<sub>Supernatant</sub>÷W

NOX precipitation (U/g)=ΔΔΑ<sub>Precipitation</sub>÷0.01×V<sub>Total</sub>÷(W÷V<sub>Total</sub> Sample ×V<sub>Sample</sub>)÷T=505×ΔΔΑ<sub>Precipitation</sub>÷W

NOX total (U/g)=NOX<sub>Supernatant</sub>+NOX<sub>Precipitation</sub>=2,525×ΔΔA<sub>Supernatant</sub>÷W+505×ΔΔA<sub>Precipitation</sub>÷W

2. Calculated by bacteria or cells number

Active unit definition: A 0.01 change of A600 value per 10<sup>4</sup> cells per min was catalyzed at reaction system is defined as a unit of enzyme activity.

NOX (U/10<sup>4</sup>)= $\Delta\Delta$ A÷0.01×V<sub>Total</sub>÷(V<sub>Sample</sub>÷V<sub>Total Sample</sub>×500)÷T=1.01× $\Delta\Delta$ A

Where: W: Sample fresh weight, g; T: reaction time, 1 min;  $V_{Total}$ : Total reaction volume, 0.25 mL;  $V_{Sample}$ : Sample volume added, 0.01 mL;  $V_{Extract}$ : Extract solution volume added, 1.01 mL;  $V_{Total\ Sample}$ : precipitation resuspension volume, 0.202 mL; Cpr: Sample protein concentration, mg/mL; 500: total number of cells or bacteria,  $5 \times 10^6$ .

Note: If the sample fresh weight is used, it needs to detect the cytoplasmic extract enzyme activity as well. The sum of the supernatant and precipitation enzyme activity is the total enzyme activity.

#### **Recommended Products**

| Catalog No. | Product Name                                      |
|-------------|---------------------------------------------------|
| KTB1020     | CheKine™ Micro Coenzyme ∣ NAD(H) Assay Kit        |
| KTB1010     | CheKine™ Micro Coenzyme II NADP(H) Assay Kit      |
| KTB1041     | CheKine™ Micro Hydrogen Peroxide (H₂O₂) Assay Kit |

## **Disclaimer**

The reagent is only used in the field of scientific research, not suitable for clinical diagnosis or other purposes.

